3 research outputs found

    Iterative, Small-Signal L2 Stability Analysis of Nonlinear Constrained Systems

    Full text link
    This paper provides a method to analyze the small-signal L2 gain of control-affine nonlinear systems on compact sets via iterative semi-definite programs (SDPs). First, a continuous piecewise affine (CPA) storage function and the corresponding upper bound on the L2 gain are found on a bounded, compact set's triangulation. Then, to ensure that the state does not escape this set, a (CPA) barrier function is found that is robust to small-signal inputs. Small-signal L2 stability then holds inside each sublevel set of the barrier function inside the set where the storage function was found. The bound on the inputs is also found while searching for a barrier function. The method's effectiveness is shown in a numerical example

    Dissipative Imitation Learning for Discrete Dynamic Output Feedback Control with Sparse Data Sets

    Full text link
    Imitation learning enables the synthesis of controllers for complex objectives and highly uncertain plant models. However, methods to provide stability guarantees to imitation learned controllers often rely on large amounts of data and/or known plant models. In this paper, we explore an input-output (IO) stability approach to dissipative imitation learning, which achieves stability with sparse data sets and with little known about the plant model. A closed-loop stable dynamic output feedback controller is learned using expert data, a coarse IO plant model, and a new constraint to enforce dissipativity on the learned controller. While the learning objective is nonconvex, iterative convex overbounding (ICO) and projected gradient descent (PGD) are explored as methods to successfully learn the controller. This new imitation learning method is applied to two unknown plants and compared to traditionally learned dynamic output feedback controller and neural network controller. With little knowledge of the plant model and a small data set, the dissipativity constrained learned controller achieves closed loop stability and successfully mimics the behavior of the expert controller, while other methods often fail to maintain stability and achieve good performance
    corecore